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The superlensing characteristics of a lossless double-negative metamaterial wedge are examined in this
paper via an analytical technique. The algorithm incorporates the Kontorovich-Lebedev �KL� transform in a
mathematically consistent manner whereas the role of the radiation condition on its correct application is
quantitatively elucidated. Implementing a ray-approximation algorithm, the proper radiation conditions are
resolved and the Helmholtz equation as well as the boundary conditions are accordingly transformed. To this
end, the prior formulation introduces a linear operator which, given the KL transform of a specific kind,
constructs the corresponding one of a different kind. Thus, the field can be described analytically in the entire
domain, showing the ability of the wedge to, perfectly, focus a line source in two points, inside and outside the
metamaterial, just like the planar double-negative slab. To validate the proposed analysis, the analytical results
are compared to those acquired by means of the finite-difference time-domain method for various geometrical
parameters and wedge configurations.
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I. INTRODUCTION

Double-negative �DNG� metamaterials, a term referring
to artificial materials with both constitutive parameters
negative,1 have been in the foreground of the past decade’s
scientific research, owing to their unique properties, which
have been, successfully, exploited in a wide assortment of
microwave and optical applications.2–7 Despite their discrete
nature—they are usually implemented as periodic arrange-
ments of miniaturized metallic particles4,5,8 or networks of
lumped circuit elements2,3—it is possible to be treated like
homogenized bulk entities with frequency-dependent consti-
tutive parameters.9–12 One of the most intriguing potentials
of metamaterials is the realization of imaging devices with
resolution below the diffraction limit, as a result of the nega-
tive refraction phenomenon and the excitation of surface-
plasmon polaritons along the interfaces of double-positive
and DNG materials.13,14 The planar slab constitutes the most
representative example of such a superlens and has been
shown, both theoretically and numerically,4,5,15 that it can
focus the propagating and part of the evanescent wave spec-
trum of a point source. In fact, the planar slab obeys to a
more general imaging theorem which states that an arbitrary
medium is canceled by another one with opposite constitu-
tive parameters.16 Via this theorem and a coordinates trans-
formation technique it has been proven that the superlensing
effect is, also, observed in other nonplanar geometries such
as metamaterial spheres or wedges.

Scattering of electromagnetic waves from penetrable
wedge-shaped media is a challenging problem of mathemati-
cal physics due to the complexity in the extraction of ana-
lytical solutions.17 Apart from numerical approaches,18 the
field can be determined only near the apex of the geometry
or under quasistatic assumptions.19–21 Essentially, the pri-
mary hurdle in dealing with such structures rests on the ab-
sence of a direct correspondence between field eigensolu-
tions in the diverse domain regions of different wave
number, and, therefore, on the difficulty to apply the appro-

priate boundary conditions to the interfaces of these regions.
Exception to this rule is the isorefractive wedge, where the
wave number remains the same in the entire domain, and
precise analytical solutions may be acquired via the conven-
tional variable-separation technique.22,23 In the area of
metamaterials, an analogous geometry to the isorefractive
wedge is the ideal DNG wedge with relative constitutive
parameters equal to −1, analyzed in Refs. 24–26 through a
variables-separation algorithm. Notice that the importance of
examining the ideal DNG wedge lies on its superlensing be-
havior, which is predicted through the generalized imaging
theorem.16

In this paper, closed-form expressions for the field of an
ideal DNG wedge are extracted via an analytical method
based on the Kontorovich-Lebedev �KL� transform. Initially,
the imaging characteristics of the structure are investigated
by means of a ray-tracing scheme, which explores the power
flow in the presence of the metamaterial wedge. The analysis
reveals that, if the source lies in a specific angular sector, the
power is focused at two points, inside and outside the wedge.
Successively, the KL transform is described and its strong
association with the radiation condition at infinity is proven.
The proposed method consists in transforming both the
Helmholtz equation and the proper boundary conditions in
the KL domain and, then, returning to the spatial domain via
an inverse transform. The radiation condition, which is nec-
essary in the application of the KL transform, is determined
from the results of the ray-tracing scheme. Special attention
is paid to the case of the source lying in the aforementioned
sector, for which outgoing and incoming waves coexist in the
same medium, an issue that leads to the definition of an
operator that relates KL transforms of different kinds. The
analytical results, so obtained, are then compared, in the
near-field region, with numerical outcomes from the finite-
difference time-domain �FDTD� algorithm27–29 and a very
satisfactory agreement is attained. In essence, the main con-
tribution of the present paper, compared to existing efficient
works, is that it provides a complete solution to the ideal
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DNG wedge problem for an arbitrary position of the source
and validates the focusing characteristics of the wedge ge-
ometry, predicted, so far, through the generalized imaging
theorem. Moreover, a consistent physical interpretation of
the derived closed-form expressions, including a comparison
with the planar-slab geometry, is supplied, while, all condi-
tions under which the theoretical analysis is applicable to
practical geometries, are systematically clarified through the
aforementioned numerical verifications.

II. THEORETICAL METHODOLOGY

The geometry under investigation is depicted in Fig. 1,
where �0 designates the angle of the wedge, �� ,�� stand for
the cylindrical coordinates of the line source which excites
the structure, and I0 is the electric current intensity flowing
through the source. Notice that due to the kind of the exci-
tation �i.e., electric current source�, and the parallel to the
z-axis symmetry of the problem, only transverse magnetic
�TMz� polarized waves evolve. As a consequence, the elec-
tric field possesses a single z-directed component, Ez, that
depends, solely, on the � ,� polar coordinates. Moreover, the
DNG medium, occupying the wedge region, is described by
the relative constitutive parameters �r=�r=−1. From a first
glance, this specific choice for �r ,�r seems nonphysical
since DNG materials are always accompanied by
dissipation.30 Nonetheless, taking into account that losses are
significant for frequencies near the medium’s resonance and
that �r ,�r become −1 at a frequency far from the resonance,
we may assume that losses are small and, as shown in Sec.
IV, their effect on the solution can be well predicted. Based
on the prior issues and considering an ej�t harmonic temporal
dependence, Ez satisfies Helmholtz equation,

��2 �2

��2 + �
�

��
+

�2

��2 + k0
2�2�Ez��,�� = g��,�� , �1�

everywhere in the space of the problem, with k0=���0�0,
g�� ,��= j��0I0����−������−��� and �� · � representing the
Dirac delta function. Furthermore, for the sake of simplicity,
throughout this paper we assume that j��0I0=1.

A. Optical-ray approach

Before proceeding with the mathematical details of the
solution, it is deemed instructive to provide a qualitative
view of the power flow, via an optical-ray approximation
technique. Such an analysis, apart from providing valuable
information regarding the physics of the problem, will enable
us to determine the appropriate radiation condition that best
describes the electromagnetic fields. Bear in mind that this
type of condition is essential to guarantee solution unique-
ness in Eq. �1� for open-end geometries, such as the class of
wedges. In the context of the optical-ray approach, each ray
is presumed to originate from the source point ��� ,��� and
undergo a bent at the air-DNG interfaces, according to
Snell’s law. More specifically, if �i ,�r are the incidence and
refraction angles, respectively, measured from the normal
vector to the interface in a clockwise sense, it follows that
�r=−�i. Taking into account this remark, the ray diagram for
����0 is drawn in Fig. 2, where, for clarity reasons, �1
=2	−�0. Note that the rays, initially divergent in the air,
converge inside the DNG medium. However, they do not
manage to achieve a complete focus before they reach the
�=�1 interface, after which they, again, diverge in the air.
Additionally, for ����, the �-directed energy-flow points
toward infinity in the air and toward the origin in the
metamaterial region.

A rather different behavior is observed for the ��
�0
case, shown in Fig. 3, where �2=2	−�� and �3=2	−2�0
+��. Now, the rays converge as � varies from 2	 to �2, thus
forming a focus at the ��� ,�2� point. As � decreases further
toward �1, the rays diverge again, until they reach the second
wedge interface. Next, they start converging and form a sec-
ond focus at the ��� ,�3� point while for �
�3 they become
divergent, again. As far as the energy is concerned, it flows
toward infinity for 0
�
�3, �1
�
�2 and toward the
wedge apex for �3
�
�1, �2
�
2	. Consequently, the
metamaterial wedge with �r=�r=−1 focuses electromagnetic
energy in an analogous manner with the planar slab. In par-
ticular, as will be next clarified through a rigorous math-
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FIG. 1. Geometry of a lossless DNG wedge-shaped medium,
illuminated by a point source at S.
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FIG. 2. Ray-approximation diagram for the ����0 case.
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ematical analysis, the field distribution at the focal planes
�=�2 and �=�3 is exactly the same as the corresponding
one at the source plane �=��, proving that the system pos-
sesses an infinite resolution, like the planar geometry.

B. Mathematical formulation

As already stated, among the most important and compe-
tent approaches for the manipulation of wedge-scattering
problems is the KL transform. Actually, in electromagnetic
applications, where a solution of Eq. �1� is pursued, it is
mandatory to implement this transform, as proposed in Refs.
31 and 22. Particularly, if f�x� is a function defined over the
positive x semiaxis, its KL transform is given through

f̃��� = KLi�f�x����� = �
0

�

f�x�H�
�i��kx�x−1dx , �2�

with H�
�i��kx� the Hankel function of order � and kind i, and

k a positive real number, which, as will become clear later,
represents the wave number of the medium. Then, the in-
verse KL transform �IKL� receives the form of

f�x� = IKLi� f̃�����x� = − �− 1�i1

2
lim


→0+
�

−j�

j�

�e
�2
J��kx� f̃���d� ,

�3�

where J��kx� stands for the first kind and �th-order Bessel
function. Notice that the pair of the KL and its inverse trans-
form, as denoted by Eqs. �2� and �3�, is not reciprocal, in the
sense that accurate results are ensured, only if the working
direction

f�x�→
KLi

f̃��� →
IKLi

f�x� �4�

is followed. Differently speaking, given an f̃��� function, in
order to assure that function f�x�, computed via Eq. �3�, con-

stitutes the IKL transform of f̃���, we must, subsequently,
obtain the KL transform of f�x� and then prove its equality to

f̃���. It is emphasized that in other integral transforms, such
as the Fourier transform, this verification process is unnec-
essary.

Since Ez fulfills Eq. �1�, it is substantial to examine the
effects of the KL transform on expressions of the x2f��x�
+xf��x�+k2x2f�x� form. Therefore, employing definition Eq.
�1� and integrating by parts, it can be shown that

KLi�x2f��x� + xf��x� + k2x2f�x�����

= �2 f̃��� + x	f��x�H�
�i��kx� − kf�x�H�

�i���kx�
�0
�. �5�

If the asymptotic behavior of the Hankel function as kx
→0+ is considered, the second term on the right-hand side of
Eq. �5� vanishes at x=0. On the contrary, for large kx values,
the Hankel function is approximated via

H�
�i��kx� �� 2

	kx
e�− 1�i+1j�kx−1/2�	−1/4	�. �6�

Substitution of Eq. �6� into Eq. �5� yields

KLi�x2f��x� + xf��x� + k2x2f�x�����

= �2 f̃��� +� 2

	k
lim
x→�

��x	f��x�

+ �− 1�i jkf�x�
e�− 1�i+1j�kx−1/2�	−1/4	�� , �7�

implying that if

lim
x→�

�x	f��x� + �− 1�i jkf�x�
 = 0, �8�

one acquires

KLi�x2f��x� + xf��x� + k2x2f�x����� = �2KLi�f�x����� .

�9�

A closer inspection of Eq. �8� reveals that, in the case of an
ej�t harmonic dependence, this formula coincides with the
radiation condition for incoming �i=1� or outgoing �i=2�
waves in cylindrical coordinates. Consequently, by means of
Eq. �9�, Eq. �1� transforms to

� �2

��2 + �2�Ez��;�� = g̃��;�� , �10�

for Ez�� ;�� and g̃�� ;�� the KL transforms of Ez�� ,�� and
g�� ,�� with respect to �. It is to be stated, herein, that the
KL transform kind �i.e., the kind of the Hankel function in-
volved in the transform definition� required to derive Eq.
�10� is resolved by Eq. �8�. In other words, the radiation
condition, which ensures solution uniqueness in field equa-
tions, is, implicitly, incorporated in the application of the KL
transform. The preceding remark is going to play a critical
role in the analysis of the DNG wedge-scattering problem,
where, as determined via the optical-ray approach, both in-
coming and outgoing waves evolve in different regions of
the structure.

At this point, it is deemed necessary to provide a physical
interpretation of the KL transform, which will contribute to

FIG. 3. �Color online� Ray-approximation diagram for the ��

�0 case.
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the sounder comprehension of the results in the next sec-
tions. Particularly, we are going to investigate the connection
of the KL spectrum with propagating/evanescent waves,
through the problem of free-space radiation of a line source,
located on the x axis ���=0�. The obvious presence of solely
outgoing waves in this arrangement imposes the use of
the second kind of the KL transform so that g̃�� ;��
=H�

�2��k0������� in Eq. �10�. Then, for the computation of the
electric field, Eq. �10� has to be solved along with boundary
conditions,

Ẽz��=0 = Ẽz��=2	, 
 �Ẽz

��



�=0
= 
 �Ẽz

��



�=2	

, �11�

which are derived through the application of the KL trans-
form on field continuity relations,

Ez��=0 = Ez��=2	, 
 �Ez

��



�=0
= 
 �Ez

��



�=2	

. �12�

Passing over the mathematical operations, it follows that

Ẽz��;�� =
H�

�2��k0���
2� sin��	�

cos	��	 − ��
 , �13�

which, in combination with Eq. �3�, suggests that the field is
expressed as a superposition of J��k0��cos	��	−��
 terms,
with � belonging to the imaginary axis. Note that all these
terms are solutions of the homogeneous Helmholtz Eq. �1�
and, therefore, constitute a complete set of free-space wave
functions. If Im����0, the cosine term in the wave-function
expression becomes cosh	Im����	−��
, indicating an expo-
nential decay of the amplitude along the � direction, as we
depart from the x axis, where the source is located. Thus,
Im����0 are, primarily, related to the evanescent part of the
spectrum, with increasing �Im���� corresponding to waves
deeper in the evanescent region. On the other hand, if �=0,
the field’s amplitude remains constant toward the � direction,
implying the connection of this value with propagating
waves. It has to be stressed, however, that unlike Cartesian
coordinates, there exists no specific � value, separating eva-
nescent from propagating waves. In fact, propagating and
evanescent waves can be detected for every �, with the
former dominating over the latter as �Im���� grows. Taking
into account the prior outcomes, the following sections ex-
plore the two principal topologies of the line source excita-
tion in relevance to the wedge and provide analytical expres-
sions for the resulting electromagnetic fields.

III. ����0 CASE

After the extraction of the necessary physical interpreta-
tions and the development of the relevant mathematical
framework, the aforesaid KL-transform-based algorithm is,
now, applied to the solution of the wedge-scattering problem.
Initiating from the ����0 case and revisiting Fig. 2, our
space is divided into regions 0
�
�1 �region 1� and �1

�
2	 �region 2�, where the energy flows toward infinity
and the origin, respectively. More specifically in region 1, the
electromagnetic field is expected to exhibit an e−jk0� /�� de-
pendence for large �, thus imposing the radiation condition

lim
�→�

��� �E1z

��
+ jk0E1z� = 0, �14�

with index 1 referring to the specific region. So, the Helm-
holtz equation, via the KL transform of the second kind,
becomes

� �2

��2 + �2�Ẽ1z��;�� = H�
�2��k0������ − ��� , �15�

for Ẽ1z�� ;��=KL2�E1z�� ,���. Its general solution is

Ẽ1z��;�� =
H�

�2��k0���
2� sin��	�

cos	��	 − �� − ����


+ a1���cos���� + b1���sin���� , �16�

where a1��� ,b1��� are functions to be resolved later, through
the pertinent field boundary conditions. On the contrary, in
region 2, occupied by the metamaterial wedge, there exist
incoming waves. Furthermore, since inside a DNG medium
the phase advance and the energy-flow directions are oppo-
site, it is deduced that as �→�, the electric field intensity,
E2z�� ,��, obtains, again, the e−jk0� /�� form. In other words,
Eq. �14� is, also, valid for �1
�
2	 and the second-kind
KL transform of E2z�� ,�� in region 2 satisfies Eq. �15�, with
its right-hand side, however, equal to zero. Hence,

Ẽ2z��;�� = a2���cos���� + b2���sin���� , �17�

for Ẽ2z�� ;��=KL2�E2z�� ,���. The unknown functions
a2��� ,b2���, together with a1��� ,b1���, are derived from the
continuity of the tangential electric and magnetic field inten-
sity components on the air-DNG interfaces, written as

E1z��=0 = E2z��=2	, 
 �E1z

��



�=0
= − 
 �E2z

��



�=2	

, �18a�

E1z��=�1
= E2z��=�1

, 
 �E1z

��



�=�1

= − 
 �E2z

��



�=�1

.

�18b�

Applying the second-kind KL transform to Eq. �18�,

Ẽ1z��=0 = Ẽ2z��=2	, 
 �Ẽ1z

��



�=0
= − 
 �Ẽ2z

��



�=2	

,

�19a�

Ẽ1z��=�1
= Ẽ2z��=�1

, 
 �Ẽ1z

��



�=�1

= − 
 �Ẽ2z

��



�=�1

.

�19b�

Then, substitution of Eqs. �16� and �17� into Eq. �19� and
solution of the resulting 4�4 linear system of equations,
leads to

a1��� =
H�

�2��k0���
2� sin��	�

sin���0�
sin	��	 − �0�


cos����� , �20a�
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b1��� =
H�

�2��k0���
2� sin��	�

sin���0�
sin	��	 − �0�


sin����� , �20b�

a2��� =
H�

�2��k0���
2� sin	��	 − �0�


cos	��	 + �1 − ���
 , �21a�

b2��� =
H�

�2��k0���
2� sin	��	 − �0�


sin	��	 + �1 − ���
 . �21b�

Overall, the KL transform of the electric field intensity in the
two regions is given by

Ẽ1z��;�� =
H�

�2��k0���
2�

cos	���0 − 	 + �� − ����

sin	��	 − �0�


, �22�

Ẽ2z��;�� =
H�

�2��k0���
2�

cos	��	 + �1 − � − ���

sin	��	 − �0�


. �23�

Subsequently, our analysis concentrates on the computa-
tion of the IKL transforms of Eqs. �22� and �23�, where due
to their similar extraction stages, only the process for the
former is described. Therefore, according to Eq. �3�, the elec-
tric field intensity in region 1 is expressed as

E1z��,�� = −
1

4
lim


→0+
�

−j�

j�

e
�2
J��k0��H�

�2��k0���

�
cos	���0 − 	 + �� − ����


sin	��	 − �0�

d� . �24�

The integral on the right-hand side of Eq. �24� can be sim-
plified into an infinite sum through a deformation of its inte-
gration path. For this objective, nonetheless, the asymptotic
behavior of Bessel and Hankel functions for large-order am-
plitudes, has to be known. Hence, assuming that �= ���ej�,
with ���→�, it holds, by means of Ref. 17, that

�J��x�� �
1

�2	���
e−����cos � ln 2���/ex−� sin ��, �25�

�H�
�2��x�� �� 2

	���
e����cos � ln 2���/ex−� sin ��, �26�

for x�0, ���
	 in Eq. �25� and −	 /2
��	 /2 in Eq.
�26�. Now, if ���� is supposed, the integration path is de-
formed along the C curve of Fig. 4, defined by �= ���e�ja for
	 /4
a
	 /2. Such a deformation is based on the fact that
the integrand along the C1 ,C2 arcs, as ���→�, is propor-
tional to e���	���
 cos�2��−w
 / �	����, with w=cos � ln��� /��
− ��0−	+��−�� �+�	−�0�. Therefore, the integral vanishes
on C1 ,C2. Additionally, the particular integrand does not
have any pole singularities inside the closed contour formed
by the imaginary axis and the C ,C1 ,C2 arcs so leading to

E1z��,�� = −
1

4
lim


→0+
�

C

e
�2
J��k0��H�

�2��k0���

�
cos	���0 − 	 + �� − ����


sin	��	 − �0�

d� . �27�

Observe that the above integral converges even if 
=0, an
issue which enables us to neglect the limit and the e
�2

term.
Successively, the C path is closed along the C3 arc for −a

�
a, where the integrand for large ��� values becomes
e−���w / �	����. It is stressed that since ���
 �a�
	 /2 and ��
��, one gets cos � ln��� /���0. Also, when ��−���� �	
−�0�, it stands �	−�0�− �	−�0−��−�� � = ��−����0 while
if ��−���� �	−�0�, which is valid only for ����, it holds
that �	−�0�− �	−�0−��−�� � =2	−2�0+��−��2	−2�0
+��−�1=��−�0�0. Conclusively, w is, always, positive
and the integral on C3 vanishes. As a result, the integral in
Eq. �27� is equal to the sum of the integrand residues at the
poles confined in the closed contour, defined by C and C3
arcs. Thus, after some algebraic manipulations,

E1z��,�� =
j	

2�	 − �0��n=0

�


n cos	�n�� − ���


�J�n
�k0��H�n

�2��k0��� , �28�

where �n=n	 / �	−�0� and


n = �1 if n � 1

1

2
if n = 0 � . �29�

Regarding the ���� case, if we employ the 2J��z�=H�
�1��z�

+H�
�2��z� identity and note that the

Re{ }�

Im{ }�

a

a

C

C

C3

C1

C2

FIG. 4. Deformation of the integration path of the IKL-
transform integral.
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e
�2
H�

�1��k0��H�
�2��k0���

cos	���0 − 	 + �� − ����

sin	��	 − �0�


formula as well as its counterpart with � ,�� interchanged, are
odd functions of �, Eq. �24� is derived �however, with � ,��
interchanged�. Hence, after the aforementioned path defor-
mation and the application of the residues theorem,

E1z��,�� =
j	

2�	 − �0��n=0

�


n cos	�n�� − ���


�J�n
�k0���H�n

�2��k0�� . �30�

In an exactly analogous manner, it can be shown that

E2z��,�� =
j	

2�	 − �0��n=0

�


n cos	�n�2	 − � − ���


�J�n
�k0�
�H�n

�2��k0��� , �31�

with �
�min�� ,��� and ���max�� ,���. The procedure is
completed via the verification that the second-kind KL trans-
form of E1z�� ,�� and E2z�� ,��, as provided in Eqs. �28�,
�30�, and �31�, coincide with Eqs. �22� and �23�. Remember
that such a validation is enforced by the nonreciprocal nature
of Eqs. �2� and �3�. Indeed, through the mathematical analy-
sis presented in the Appendix, it is proven that Eqs. �28�,
�30�, and �22�, as well as Eqs. �31� and �23� constitute pairs
of KL-IKL transforms. Furthermore, notice that Eqs. �28�,
�30�, and �31� coincide with Eq. �16� of Ref. 24, after an
anticlockwise �0 /2 coordinates rotation.

Figure 5 displays two quiver plots of the Poynting vector,
as computed from Eqs. �28�, �30�, and �31� for �0=30°, ��
=20°, 40°, and ��=4�0, where �0=2	 /k0 is the wavelength
in the air. It is apparent that for ��=40° ��0, the energy
flow is in very good agreement with that predicted via the
optical-ray approximation method. Conversely, when ��
=20° 
�0 �i.e., violation of the principal assumptions set for
the solution�, a nonphysical source at �=320° and an “en-
ergy sink” at �=340° appear. This phenomenon can be ex-
clusively attributed to the fact that the latter outcome has
been obtained by utilizing a radiation condition which is not
at all valid for the specific �� value. The last explanation
certifies our previous allegation that the choice of this con-
dition plays a decisive role in the consistent application of
the KL transform.

IV. ��
�0 CASE

A. Analytical formulation

The objective of this section is to examine the ��
�0
case of the metamaterial wedge-scattering problem. Let us
recur to Fig. 3 and the optical-ray approach, by means of
which we can deduce that the energy flows inward in region
�3
�
�1 �air� and outward in region �1
�
�2 �DNG
medium�. Moreover, recalling that in a DNG material the
energy flow and the phase advance have opposite directions,
it is inferred that the electric field intensity varies proportion-
ally to an ejk0� /�� term, for large �, in both of the prior
angular sectors, hence indicating

lim
�→�

��� �Ez

��
− jk0Ez� = 0 �32�

as the most suitable radiation condition for �3
�
�2. On
the other hand, Eq. �14� remains, still, valid for 0
�
�3
and �2
�
2	. Therefore, based on these remarks, our
space must be separated into four distinct areas: 0
�
�3
�region 1�, �3
�
�1 �region 2�, �1
�
�2 �region 3�,
and �2
�
2	 �region 4�. Following the procedure of Sec.
II, a KL transform of the first kind is applied in regions 2
and3 and a KL transform of the second kind is applied in
regions 1 and 4. So, if Eiz is the electric field intensity in the

(b)

(a)

FIG. 5. �Color online� Power-flow diagrams obtained via Eqs.
�28�, �30�, and �31� for �0=30°, ��=4�0 and �a� ��=40°, �b� ��
=20°. The white solid line indicates the sides of the DNG wedge.
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ith region �i=1,2 ,3 ,4�, the transformed fields are described
by

Ẽ1z��;�� = KL2�E1z��,��� = a1���cos���� + b1���sin����

+
H�

�2��k0���
2� sin��	�

cos	��	 − �� − ����
 , �33�

Ẽ2z��;�� = KL1�E2z��,��� = a2���cos���� + b2���sin���� ,

�34�

Ẽ3z��;�� = KL1�E3z��,��� = a3���cos���� + b3���sin���� ,

�35�

Ẽ4z��;�� = KL2�E4z��,��� = a4���cos���� + b4���sin���� .

�36�

Unknown functions ai��� ,bi��� �i=1,2 ,3 ,4� are specified
by the boundary conditions at region interfaces, i.e.,

E1z��=�3
= E2z��=�3

, 
 �E1z

��



�=�3

= 
 �E2z

��



�=�3

, �37a�

E2z��=�1
= E3z��=�1

, 
 �E2z

��



�=�1

= − 
 �E3z

��



�=�1

,

�37b�

E3z��=�2
= E4z��=�2

, 
 �E3z

��



�=�2

= 
 �E4z

��



�=�2

, �37c�

E4z��=2	 = E1z��=0, 
 �E4z

��



�=2	

= − 
 �E1z

��



�=0
. �37d�

As a subsequent step, we define the operator L	 f̃���

=KL1�IKL2	 f̃���
�, which, given the second-kind KL trans-

form f̃��� of an arbitrary function f�x�, provides the first-kind
KL transform of f�x�. It is mentioned that due to the nonre-
ciprocal property of KL and IKL transforms, L is, only, ap-
propriate for functions that are known to be the second-kind
KL transforms of other functions. Thus, applying the first-
kind KL transform to Eqs. �37a�–�37c� via operator L, where
necessary, and the second-kind KL transform to Eq. �37d�, it
is derived,

L�Ẽ1z���=�3
= Ẽ2z��=�3

, L
� �Ẽ1z

��
�


�=�3

= 
 �Ẽ2z

��



�=�3

,

�38a�

Ẽ2z��=�1
= Ẽ3z��=�1

, 
 �Ẽ2z

��



�=�1

= − 
 �Ẽ3z

��



�=�1

,

�38b�

Ẽ3z��=�2
= L�Ẽ4z���=�2

, 
 �Ẽ3z

��



�=�2

= L
� �Ẽ4z

��
�


�=�2

,

�38c�

Ẽ4z��=2	 = Ẽ1z��=0, 
 �Ẽ4z

��



�=2	

= − 
 �Ẽ1z

��



�=0
.

�38d�

Furthermore, if Eqs. �33�–�36� are plugged into Eq. �38�,

L�M���3� · X1��� +
H�

�2��k0���
2� sin��	�

S��2�0 − 	��
= M���3� · X2��� , �39a�

M���1� · X2��� = J · M���1� · X3��� , �39b�

M���2� · X3��� = L�M���2� · X4���� , �39c�

M��2	� · X4��� = J · M��0� · X1��� +
H�

�2��k0���
2� sin��	�

S��	 − ��� ,

�39d�

where Xi���= 	ai���bi���
T �i=1,2 ,3 ,4�, S��a�
= 	cos��a�� sin��a�
T, T denotes the transpose of a matrix,

M��a� = � cos��a� sin��a�
− � sin��a� � cos��a� � �40�

and J is a 2�2 diagonal matrix with diagonal elements 1
and −1. Solving the system of linear Eq. �39� with respect to
a1��� ,b1���, it is extracted,

L�a1���	cos���3� − cos�����
 + b1���	sin���3� − sin�����


+
H�

�2��k0���
2� sin��	�

�cos	��2�0 − 	�
 − cos��	��� = 0, �41a�

L��a1���	sin���3� − sin�����
 − �b1���	cos���3�

− cos�����
 −
H�

�2��k0���
2 sin��	�

�sin	��2�0 − 	�
 + sin��	���
= 0. �41b�

The crux for having the latter formulas solved resides on the

fact that the sole solution of equation L� f̃����=0 is the zero

function f̃���=0. This remark constitutes an immediate up-
shot of the statement that the only function whose KL trans-
form equals to zero, is the zero function. Therefore, the op-
erand in Eq. �41� is zero and a1��� ,b1��� are attained to be
the same as in Eqs. �20a� and �20b�. In turn, a4��� ,b4���,
calculated through Eq. �39d�, coincide with a2��� ,b2��� of
Eqs. �21a� and �21b�. Generally, E1z�� ,�� is the same as in
Eqs. �28� and �30� and E4z�� ,�� coincides with E2z�� ,�� in
Eq. �31�.
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For a2��� ,b2���, substitution of Eq. �20� into Eq. �39a�
yields

X2��� = M�
−1��3� · L� H�

�2��k0���
2� sin	��	 − �0�


S���0 − 	�� ,

�42�

while, through Eq. �39b�, a3��� ,b3��� are found from

X3��� = M�
−1��1� · J · M���1� · X2��� . �43�

Thereupon, quantities

A = L�H�
�2��k0���

2�
cot	��	 − �0�
� , �44�

B = L�−
1

2
H�

�2��k0���� , �45�

must be evaluated. Through the definition of operator L, in

order to obtain L� f̃����, function f�x� should be, first, com-
puted by Eq. �3� with i=2. Then, it is necessary to verify if

the second-kind KL transform of f�x� is, actually, f̃���, and,
lastly, get the first-kind KL transform of f�x�. Application of
the preceding process to A leads to the calculation of the
operand’s second-type IKL transform, in terms of the contour
deformation technique presented in Sec. II, as

IKL2�H�
�2��k0���

2�
cot	��	 − �0�
�

=
j	

2�	 − �0��n=0

�


nJ�n
�k0�
�H�n

�2��k0��� . �46�

Using the results of the Appendix, it can be proven that the
second-type KL transform on the right-hand side of Eq. �46�
is, indeed, the operand on the right-hand side of Eq. �44�. So,
A is retrieved from �see Appendix for the full analysis�

A = KL1� j	

2�	 − �0��n=0

�


nJ�n
�k0�
�H�n

�2��k0����
=

H�
�1��k0���

2�
cot	��	 − �0�


−
2

	 − �0
�
n=0

�


nej�n	/2J�n
�k0���

e−j�	/2

�2 − �n
2 . �47�

In contrast, to find B is simpler, since one may notice that
H�

�2��k0��� is the second-type KL transform of ����−���, i.e.,

B = KL1�−
1

2
���� − ���� = −

1

2
H�

�1��k0��� . �48�

Therefore, by means of Eqs. �42� and �43�, it is derived

a2��� = A cos���3� − B sin���3� , �49a�

b2��� = A sin���3� + B cos���3� , �49b�

a3��� = A cos���2� + B sin���2� , �50a�

b3��� = A sin���2� − B cos���2� . �50b�

Finally, Eq. �34� becomes

Ẽ2z��;�� =
H�

�1��k0���
2�

cos	��	 − �0 + �� − ��

sin	��	 − �0�


−
2

	 − �0
�
n=0

�


nej�n	/2J�n
�k0���

e−j�	/2

�2 − �n
2

�cos	��� − �3�
 �51�

whereas from Eq. �35� one receives

Ẽ3z��;�� =
H�

�1��k0���
2�

cos	��	 + �1 − �� − ��

sin	��	 − �0�


−
2

	 − �0
�
n=0

�


nej�n	/2J�n
�k0���

e−j�	/2

�2 − �n
2

�cos	��� − �2�
 . �52�

Having extracted the electric field intensity KL transform,
the spatial distribution of the field may be readily acquired
from Eq. �3�. Hence, after the proper mathematical manipu-

lations, the IKL-transform integral of Ẽ2z�� ;�� is written as

IKL1�Ẽ2z��;��� =
j	

2�	 − �0��n=0

�


n cos	���

− ���
J�n
�k0�
�H�n

�2��k0��� . �53�

Bear in mind that the IKL1 notation is, unduly, used to point
out the integral of Eq. �3� since it is not known, yet, whether
the KL transform of the right-hand side of Eq. �53� equals to

Ẽ2z�� ;��. In addition, the IKL integral of the first term on the
right-hand side of Eq. �51� has been computed in a formal-
istic way, as it does not converge for every �, due to the fact
that �	−�0+��−��− �	−�0��0, for ���3. At a first
glance, the outcome of Eq. �53� seems inadequate since it is
the same as Eqs. �28� and �30� which result in artificial
sources and “energy sinks.” Nonetheless, a closer assessment
reveals that the first-kind KL transform of Eq. �53�, described
by

KL1�IKL1	Ẽ2z��;��
� =
H�

�1��k0���
2�

cos	��	 − �0 + �� − ��

sin	��	 − �0�


−
2

	 − �0
�
n=0

�


nej�n	/2J�n
�k0���

e−j�	/2

�2 − �n
2

�cos	�n�� − ���
 , �54�

�see Appendix for details�, differs from Ẽ2z�� ;�� given in
Eq. �51�. This observation enables us to realize that, essen-
tially, there is no function E2z�� ,�� whose first-kind KL
transform is the same as the one of Eq. �51�. Similar conclu-

sions are, also, drawn for Ẽ3z�� ;�� in Eq. �52�.

B. Discussion

In general, the field of a DNG wedge with �r=�r=−1,
illuminated by a current source, diverges inside the angular
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sector �3
�
�2, when ��
�0. Nevertheless, this behav-
ior is not surprising, if we consider that such a phenomenon
is, also, present in a planar metamaterial slab, where the field
cannot be evaluated between the first focus in the interior
and the second focus at the exterior of the slab. Due to its
significance, a comprehensive explanation of the prior issues
is next provided. Actually, the most intriguing effect related
to the ideal DNG wedge is that the electric field intensity on
the �=�2 and �=�3 planes is exactly the same as in the
source plane, implying that the line source is perfectly fo-
cused on the aforesaid planes. For this situation to occur,
both the propagating and evanescent part of the source’s
spectrum have to be perfectly reproduced at the focus. Re-
garding propagating waves, it is the negative refraction that
leads to the perfect focusing of their energy, as indicated in
the ray diagram of Fig. 3. One can clearly observe that all
rays captured from the wedge converge at two specific points
inside and outside the DNG material. In other words, all of
the propagating spectrum energy captured by the DNG me-
dium is perfectly focused at these two particular points.

Conversely, transmission of evanescent waves lies on a
completely different principle. Specifically, since the ampli-
tude of these waves decays with the distance from the source
in free space, the imaging device should posses an amplifi-
cation mechanism in order to restore their amplitude at the
focus. In the planar-slab geometry, the excitation of surface-
plasmon modes at the air-DNG interfaces results in the con-
centration of the energy, required for the reproduction of the
evanescent waves amplitude at the focus, around these
interfaces.5,15 Similarly, the DNG wedge supports plasmon
modes, whose amplitude maximizes on the air-DNG inter-
faces and decays exponentially along the � direction away
from them.19,21 The attenuation factor �p of these modes to-
ward the � direction obeys to dispersion equations

�r = −
tanh	�p�	 − �0/2�


tanh��p�0/2�
, �55a�

�r = −
tanh��p�0/2�

tanh	�p�	 − �0/2�

, �55b�

holding for even and odd modes, with regard to the bisector
�=−�0 /2 of the wedge.19 From Eq. �55� it can be, easily,
derived that, when �r=−1, ��p�→�, which explains the per-
fect focusing of the entire evanescent part of the spectrum
�i.e., infinite resolution�. Recall from the planar-slab case that
the value of the plasmon’s spectral variable determines the
portion of evanescent waves that can be transmitted to the
focus.

A phenomenon which is closely associated to the excita-
tion of plasmon modes is field divergence in the sector be-
tween the focuses. Its interpretation lies on the fact that,
when ��p�→�, even and odd modes acquire infinite ampli-
tude in this sector as well as in its symmetric one with re-
spect to �=−�0 /2. Essentially, in the latter sector the modes
add destructively while in the former constructively, yielding
a diverging field only between the two focuses. As a matter
of fact, apart from this diverging behavior, the field possesses
an additional singularity near the tip of the wedge, which

becomes observable when �r is slightly different from 1 and,
therefore from Eq. �55�, �p is finite. In particular, for small �
values, the � component of the magnetic field intensity be-
haves as ��j�p−1,19 yielding a �−2 dependence of the magnetic
energy density. Alternatively, magnetic energy density is hy-
persingular near the wedge tip and the total magnetic energy
becomes infinite. Furthermore, it is noteworthy to point out
the infinitely rapid oscillating behavior of all field compo-
nents as �→0, following from the ��j�p =e�j�p ln � term in
their expressions. Evidently, the previously described non-
physical phenomena are suppressed in a more realistic con-
figuration, where losses are present,30 however, with the si-
multaneous degradation in imaging resolution.

As already indicated in Sec. II, dissipation is an indis-
pensable part of DNG materials,30 although it may be con-
sidered small in the �r=�r=−1 case. Regarding the perfect
imaging effect, losses affect propagating and evanescent
waves in a different regime. Thus, for propagating waves,
dissipation introduces a reduction in their amplitude, but it
has a little effect on their focusing, since it does not notably
influence negative refraction. Conversely, evanescent waves
are significantly affected, even, by small losses, and the in-
finite resolution of a lossless DNG wedge is restricted to
finite values, although still above the diffraction limit. Spe-
cifically, if �r has an imaginary part, �p becomes finite and
complex, imposing an upper limit on the evanescent waves
spectrum which can be transmitted to the focus.33 Assuming
that �p=�p�+ j�p�, the Ez dependence near the wedge tip is

proportional to � j�p =� j�p��−�p�, with �p�
0 since the tangential
field components to the edge must be finite. Consequently,

H� behaves like � j�p��−�p�−1 and the energy singularity disap-
pears, as −�p�−1�−1. In addition, the finite value of �p� sup-
presses field divergence between the focuses, despite the fact
that amplitude may receive large values.

V. NUMERICAL RESULTS

To verify the preceding analysis, this section conducts a
set of comparisons between the proposed field expressions
and diverse numerical outcomes, obtained via a frequency-
dependent FDTD technique. Due to the inevitably confined
size of the computational domain and thus its lack to simu-
late infinite structures, our geometry is truncated at a radius
R from the origin by means of a complex-frequency-shifted
perfectly matched layer.27 Moreover, the finite wedge is ter-
minated at a circular arc for the elimination of any artificial
reflections �see the white solid-line sketch in Fig. 6� while a
�0 /20 spatial step, with �0 the free-space wavelength at f0
=1 GHz, is selected to discretize the continuous space. The
constitutive parameters of the DNG material are described by
a Drude dispersion model, which gives �r=�r=−1 at 1 GHz,
and the distance between the source and the wedge apex is
set to ��=4�0.

Considering the prior issues, the first application deals
with the numerical evaluation of the power flow when �0
=30° and R=20�0. To this goal, Figs. 6�a� and 6�b� present
the corresponding diagrams for ��=40° and ��=20°, respec-
tively. For the ��=40° case and consistent with our ray-
approximation analysis in Fig. 2, the power converges as it
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crosses the �=0° air-DNG interface �with all coordinates
referring, hereafter, to Fig. 1� and diverges after passing
through the �=�1 one. Nevertheless, contrary to the theoret-
ical presumptions, the area where incoming waves exist does
not completely occupy the wedge sector. In fact, based on
the power intensity amplitude of Fig. 6�a�, it is observed that
the � component of the Poynting vector points toward the
wedge apex, primarily, in the region defined by the wedge
sides and the black solid line. Note that the latter line is
symmetrical—with regard to the upper wedge side—to the
last ray on the right-hand side of the source which intersects
the metamaterial. This simply indicates that any discrepan-
cies between numerical and theoretical results should be,
above all, attributed to the finite length of the structure. Also,
the refracted power is, principally, located on the left-hand
side of the black solid line below the wedge. Equivalent
conclusions are drawn for the ��=20° case, with the excep-
tion that, herein, two focal points are created, namely, one
inside and the other outside the wedge, as already explained
in Fig. 3. Again, the last ray of the source that reaches the
structure 	black solid line in Fig. 6�b�
 specifies the region
between the source and the first focus where incoming waves
exist. Also, for �
�3, the power intensity becomes signifi-
cant in the area between the black solid and the dashed line,
which connects the second focus to the end point of the
wedge’s �=�1 side. In particular, this line is formed by the
last ray, emanating from the first focus in the metamaterial,
that is, refracted by the �=�1 air-DNG interface.

Similar interpretations are extracted from the phase of the
field, illustrated in Figs. 7�a� and 7�b�. Recollecting that the
phase grows/reduces with the distance from the origin for

incoming/outgoing waves in the air and outgoing/incoming
waves in the DNG medium, one can, readily, discern the
regions where each wave type evolves and confirm that are
the same as those depicted by the ray-approximation method
�except for the effects accredited to the metamaterial’s finite
size�. It is mentioned that the white dotted lines inside and
outside the DNG medium in Fig. 7�b� correspond, respec-
tively, to the �=�2 and �=�3 lines of Fig. 3.

Next, our investigation validates the efficiency of the ana-
lytically derived near-field expressions through comparisons
with numerical data for different �0 and �� values. All veri-
fications are performed along straight lines, whose end points
A and B have coordinates �xA ,yA� and �xB ,yB�, with respect
to the system of Fig. 1. In this context, the real part of the
electric field intensity for the �0=30° ,��=40° case is pre-
sented in Fig. 8�a� along the line with xA=−0.705 m, yA
=0.45 m, xB=1.469 m, yB=−3.3150 m and in Fig. 8�b�
along the line with xA=−0.705 m, xB=7.74 m, yA=yB
=0.45 m. For the sake of convenience, these lines are drawn
in the respective inlet figures, which show the surface plot of
the electric field intensity real part. Additionally, based on
the aspects of the preceding power-flow analysis, they are,
carefully, chosen to lie in areas where the effect of the
wedge’s finite length is deemed small. On the other hand, the
horizontal axis of Figs. 8�a� and 8�b� provides the distance
from point A in wavelengths whereas their vertical axis gives
the electric field intensity in arbitrary units �arb. units�. As
promptly observed, the plots in both figures exhibit a very
satisfactory agreement, thus substantiating the potential of
the analytical formulas.

In relation to the ��
�0 case, it is important to take into
consideration that the analytical solution does not converge

(b)

(a)

FIG. 6. �Color online� Numerically computed power-flow dia-
grams for �0=30°, ��=4�0 and �a� ��=40°, �b� ��=20°.

(b)

(a)

FIG. 7. �Color online� Numerically computed phase diagrams
for �0=30°, ��=4�0 and �a� ��=40°, �b� ��=20°.
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in the �3
�
�2 angular sector and therefore no compari-
sons can be conducted therein. To this issue, remember that
the region where the structure’s finite size appears negligible
is not only determined by the last ray of the source crossing
the DNG medium but, also, from the ray that passes from the
second focus and the wedge’s end point at its �=�1 side
	dashed line in Fig. 6�b�
. On the base of these remarks, the
analytically and numerically evaluated real part of the elec-
tric field intensity for �0=30° and ��=20°, is presented
in Figs. 9�a� and 9�b� along the lines with xA=−0.105 m,
yA=0 m, xB=1.102 m, yB=−3.315 m and xA=−0.105 m,
xB=7.74 m, yA=yB=0.36 m, respectively. Their agreement
is, evidently, very sufficient, implying that, although the ana-
lytical solution is nonconvergent for �3
�
�2, it remains
considerably accurate in the rest domain.

To strengthen the last assertion, the �0=60° and ��=30°
case is, additionally, explored. Bewaring to conduct our
comparison in areas where the wedge’s finite length has
a minimal impact on the field, the outcomes along the
lines with xA=0 m, xB=−0.705 m, yA=yB=−1.2 m and xA
=−0.705 m, xB=15.9 m, yA=yB=0.36 m are displayed in
Figs. 10�a� and 10�b�. Again, it becomes apparent that the
analytical and numerical curves are, appreciably, close to

each other. On the contrary, if the perpendicular to the x-axis
line passing from the �xA ,yA�= �−0.6 m,0 m� point is to be
selected, the curves agree, merely, on the part of the line
which belongs to the region where the structure’s finite size
can be neglected, as shown in shaded area of Fig. 11. The
above observations confirm the robustness of the proposed
infinite case closed-form expressions and manifest the key
prerequisites for the consistent application of them in the
finite arrangement.

VI. CONCLUSION

The analytical solution for the problem of a lossless DNG
wedge illuminated by a line source at an arbitrary position,
has been presented in this paper via an efficiently formulated
technique founded on the KL transform. Establishing a self-
consistent mathematical procedure, it has been proven that
when the KL transform is applied to the Helmholtz equation,
the method inherently embodies the radiation condition.
Hence, to extract physically meaningful results, one must,
first, determine the proper radiation condition, which, in this
paper, has been attained by a ray-tracing algorithm. Further-
more, when the source lies in an angular sector equal to the

0 2 4 6 8 10 12 14-2

-1

0

1

2

3

4

distance from point in wavelengthsA

Re
{

}
E z

( a
rb

. u
ni

ts
)

numerical
analytical

A

0 5 10 15 20-4

-3

-2

-1

0

1

2

3

4

5

Distance from point in wavelengthsA

numerical
analytical

Re
{

}
E z

(a
rb

. u
ni

ts
)

A

(b)

(a)

FIG. 8. �Color online� Comparison between the numerically and
analytically calculated electric field intensity real part for �0=30°,
��=4�0, and ��=40° along the line with end-point coordinates �a�
xA=−0.705 m, yA=0.45 m, xB=1.469 m, yB=−3.315 m and �b�
xA=−0.705 m, xB=7.74 m, yA=yB=0.45 m.
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FIG. 9. �Color online� Comparison between the numerically
and analytically calculated electric field intensity real part for �0

=30°, ��=4�0, ��=20° along the line with end-point coordinates
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xA=−0.105 m, xB=7.74 m, yA=yB=0.36 m.
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opening of the wedge, a linear operator that relates KL trans-
forms of different kind has been introduced to transform both
the Helmholtz equation and the boundary conditions in the
KL domain. In this way, the transformed field is expressed as

a direct combination of specific integrals, which, for the
wedge examined herein, can be computed in a closed form.
For the investigation to be complete, comparisons with
FDTD outcomes have confirmed the high accuracy of the
proposed formulas.

One of the analysis’ major conclusions is that the ideal
DNG wedge behaves similarly to the planar slab regarding
its imaging characteristics. In particular, if the angular dis-
tance of the source is less than the wedge angle, the field on
the source plane is, perfectly, reproduced on two planes, in-
side and outside the wedge. Moreover, as in the planar case,
the field between the two focus planes diverges, due to the
excitation of surface waves. The same results, still, hold in
the finite case, with the exception that the field has to be
examined in the area restricted by the last rays of the source
which intersect the DNG medium. Finally, it is worth notic-
ing that, unlike, the planar slab, the wedge is a semi-infinite
structure and it does not capture all the source’s rays, a phe-
nomenon which, however, does not affect the imaging qual-
ity.

A possible future extension of the present work could be
the investigation of the focusing characteristics of an infinite
DNG wedge in the presence of a point source. Although
focusing of a point source is, actually, a three-dimensional
�3D� problem, it can be reduced to a corresponding two-
dimensional �2D� one since the 3D field can be expressed via
the 2D Green’s function, which in fact is the electric field
intensity obtained in the present paper. Moreover, from a
qualitative point of view, an arbitrary ray impinging on one
of the air-DNG interfaces is refracted at an angle opposite to
the incident one, due to the −1 value of the refractive index.
In other words, the refracted ray is symmetrical to its inci-
dent counterpart, with respect to the air-DNG interface.
Therefore, provided that the incident ray emanates from the
point source, the refracted one intersects the horizontal xy
plane at a point symmetrical to the source, a fact which in-
dicates that all rays captured by the wedge converge to this
particular point inside the DNG medium. It is worth noticing
that the point of convergence coincides with the focus inside
the wedge of the 2D problem. Through a similar reasoning, it
can be found that rays, also, intersect at an additional point
outside the wedge, which is the other focus of the 2D con-
figuration. The above remarks allow us to expect that a loss-
less DNG wedge maintains its imaging properties in the 3D
space, as well.
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APPENDIX: KL-TRANSFORM COMPUTATIONS
IN EQS. (28) and (30)

It is the purpose of this section to provide a detailed de-
scription for the KL-transform evaluation of function
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FIG. 10. �Color online� Comparison between the numerically
and analytically calculated electric field intensity real part for
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nates �a� xA=0 m, xB=−0.705 m, yA=yB=−1.2 m and �b�
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u��� =
j	

2�	 − �0��n=0

�


nJ�n
�k0�
�H�n

�2��k0���cos	�n�� − ���
 ,

�A1�

that appears during the verification process of Eqs. �28� and
�30� as well as in the determination of A from Eq. �44�.
Recall that �n=n	 / �	−�0� while the value of 
n is given in
Eq. �29�. Let us, first, obtain the KL transform of the un���
=J�n

�k0�
�H�n

�2��k0��� function, which is the constitutive ele-
ment of the sum in Eq. �A1�. To this end, one may write

un��� = J�n
�k0��H�n

�2��k0���	H��� − H�� − ���


+ J�n
�k0���H�n

�2��k0��H�� − ��� �A2�

with H��� the Heaviside step function, and derive that un���
satisfies the differential equation

�2un���� + �un���� + k0
2�2un��� = �n

2un��� −
j2

	
����� − ��� .

�A3�

Applying the second-kind KL transform in Eq. �A3� and ob-
serving that un��� complies with Eq. �8� with i=2, it is ex-
tracted

�2KL2�un���� = �n
2KL2�un���� −

j2

	
H�

�2��k0��� . �A4�

As a consequence,

KL2�un���� = −
j2

	

H�
�2��k0���
�2 − �n

2 �A5�

and

KL2�u���� =
1

	 − �0
H�

�2��k0����
n=0

�

n

�2 − �n
2cos	�n�� − ���
 .

�A6�

The above equation can be further simplified via

cos	���0 − 	 + �� − ����

sin	��	 − �0�


=
2�

	 − �0
�
n=0

�

n

�2 − �n
2

�cos	�n�� − ���
 , �A7�

which is based on the fact that the function on the left-hand
side of Eq. �A7� is meromorphic with respect to �.32 So,

KL2�u���� =
H�

�2��k0���
2�

cos	���0 − 	 + �� − ����

sin	��	 − �0�


,

�A8�

which, for �=�3, is the operand of Eq. �44�.
Pertaining to the calculation of KL1�un���� and succes-

sively of KL1�u����, we have taken into account that

� 2

	k0
lim
�→�

�x	un���� − jk0un���
ej�k0�−1/2�	−1/4	�

= −
j4

	
ej�n	/2J�n

�k0���e−j�	/2. �A9�

Then, application of the first-kind KL transform on Eq. �A3�
yields

�2KL1�un���� −
j4

	
ej�n	/2J�n

�k0���e−j�	/2

= �n
2KL1�un���� −

j2

	
H�
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or equivalently
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and

KL1�u���� =
1
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H�
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Finally, through the utilization of Eq. �A7� in Eq. �A12�, it is
retrieved

KL1�u���� =
H�

�1��k0���
2�
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2
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